
E L S E V I E R Ecological Modelling 94 (1997) 33-44

flmlll ltN

Designing an object-oriented structure for crop models

B. Acock*, V.R. Reddy
USDA :ARS Remote Sensing and Modeling Laboratory, Building 007, BARC-West, Beltsville, MD 20705-2350, USA

Abstract

Object-oriented design (OOD) and programming (OOP) offer many advantages for developing modular crop
models. The model structure is well-defined, reuse of code is facilitated through inheritance, and data can be hidden
(encapsulated) inside objects that correspond to physical components of the real system, e.g. roots, stems, leaves, or
soil layers. However, OOD is best suited to describing the relationship between freely interacting objects, and it has
so far been used almost exclusively for modeling simple, discrete and sequential actions. Plant models are not like the
automatic teller machine software that is often used in examples of OOD. Plant organs, i.e. objects on the plant, do
not wait passively for input from other organs, but they all grow in response to their environment and interact with
each other simultaneously and continuously. Also, our ignorance of the processes controlling plant growth forces us
to use devices like the limiting factor model to handle these interactions. Many plant models therefore calculate
potential growth, limitations imposed by various factors, and then actual growth. In short, there are procedural
elements in plant models that do not easily fit an OOD. However, some OOP languages like C + + allow mixed
designs to be implemented, so we have developed a mixed, but mostly object-oriented structure that (1) contains the
components familiar in extant procedural designs; (2) can be used for modeling at several levels of complexity; and
(3) can be used to model any plant. The mixed procedural/object-oriented design has been implemented in C + + as
a shell using dummy algorithms, and its operation verified. The problems and advantages are discussed. © 1997
Elsevier Science B.V. All rights reserved

Keywords: Procedural; Process-oriented; Discrete; Continuous; Sequential; Parallel

1. Introduction

Compute r science is a rapidly developing field
and new programming languages come so fast
that it is difficult to keep up with them. It is
impor tant that plant modellers do not miss signifi-

* Corresponding author.

cant advances, but their problem is knowing
which advances are significant. For instance,
many computer languages have been touted as
replacements for For t ran, but most plant and soil
modeling is still being done in that venerable
language.

The latest challenge is f rom object-oriented pro-
gramming (OOP) and the new languages for im-
plementing object-oriented designs (OOD).

0304-3800'97/$17.00 © 1997 Elsevier Science B.V. All rights reserved
PII S0304-3800(96)01 926-6

34 B. Acock, V.R. Reddy ; Ecological Modelling 94 (1997) 33 44

Fortran was developed to implement procedural
or process-oriented designs, where 'objects' such
as leaves, roots, stems, etc., exist only as state
variables and the code mimics the processes oper-
ating on those variables. OOP languages empha-
size the real or imagined objects in a system, their
states and the actions they are able to perform.
The advocates of OOD claim that it has impor-
tant advantages over process-oriented designs for
developing modular crop models. To test the ve-
racity of these claims, we developed a general
object-oriented structure for crop models. This
paper describes the structure of the model and
some of the problems we encountered. Using
C + + , we developed a mixed procedural/object-
oriented design that: (1) contains components fa-
miliar in extant procedural designs; (2) can be
used for modeling at several levels of complexity;
and (3) can be used to model any plant.

2. Object-oriented design

2.1. The advantages of OOD

In traditional procedural designs, a plant com-
puter model is a collection of state variables (e.g.
leaf nitrogen content, root dry weight, etc.) that
describe the state of a plant system, plus al-
gorithms that define how various processes
change these state variables over time (e.g. nitro-
gen fixation, carbohydrate allocation, photosyn-
thesis, etc.). The rates of the processes changing
these state variables depend on the input or driv-
ing data (e.g. solar radiation, soil temperature,
etc.) and the state of the system. The main practi-
cal problem with this design is how these state
variables are managed. Either they are available
to all the algorithms, e.g. in a Fortran COMMON
block, or they are passed to each module, e.g. as
arguments in a CALL statement. In the first
instance, the state variables can be altered in any
part of the program, there is no control over
where changes take place, and it is frequently
difficult to find all locations where the state vari-
ables are changed. In the second instance, a subset
of the attributes is sent as a string, and the order
of variable names in the sending and receiving

arguments must match exactly. There are many
opportunities for error.

Another problem with procedural approaches is
that processes have no inherent structure to guide
the design of the model. Algorithms are often
grouped into modules describing related processes
but each programmer's idea of the relationships
differs from that of other programmers. Thus,
ideas from one model must usually be repro-
grammed from the original mathematical equa-
tions before they can be tested in another model,
and merging models is a major task. Reuse of
code is minimal.

In an object-oriented design, a plant model is a
set of objects that each know their own state and
how to change that state in response to com-
mands called messages (Acock and Reynolds,
1997). The data describing the state of an object
are known as attributes or variables, and the
algorithms that change that state are known as
services or methods. Attributes and methods are
grouped together within each object. Objects can
send messages to each other to initiate methods
(Meyer, 1988; Wegner, 1990).

The physical objects in the real-world system
impose a fairly obvious structure on the model.
Even without advance agreement, there is a good
chance that objects from various plant models will
be similar and thus could be swapped and/or
merged. Also, the data associated with an object
are hidden within that object and are only avail-
able to the rest of the model if they are specifically
made available. Thus an object-oriented model
gives the programmer better control of data
(Booch, 1991). Linking the data with the al-
gorithms that act on them creates modules that
are more independent of each other than would
otherwise be possible. Finally, in OOD the objects
can be arranged in an inheritance structure such
that objects with the same or similar processes can
inherit code from each other. All these attributes
lead to maximum reuse of code(Cox, 1986; Wol-
czko, 1987; Meyer, 1988; Wegner, 1990).

2.2. Plant models and A TM machines

Despite these advantages, there are difficulties
with using an object-oriented design for plant

B. Acock, V.R. Reddy / Ecological Modelling 94 (1997) 33 44 35

models. Plants do not consist of independent
objects waiting to respond to input. Fruits, leaves,
stems and roots are all in constant
communication via the transfer of materials and
hormones essential for tissue synthesis. They are
also all responding independently to their
environment and are all constantly growing.
Thus, plants are quite unlike the automatic teller
machines (ATM), which are often cited as
excellent examples of the OOD concept.

An ATM machine is inactive until it receives
input from a customer. Depending on the input to
the Keyboard object, the ATM will activate other
objects to dispense cash, print a statement, etc.
Some objects will not be activated in a given
transaction. In the plant/soil/atmosphere system
in plant models, all the objects are in ceaseless
activity. The plant modeler is already used to
representing these simultaneous continuous
processes on a single processor that performs
discrete calculations in sequence. With OOD the
modeler is also faced with mapping these
processes on to objects that may freely interact in
any sequence. Most of the literature on OOD
concentrates on modeling discrete sequential
processes like the ATM. and the problem of
modeling continuous parallel processes is rarely
discussed.

The level of activity in a given object typically
depends on the activities of several other objects.
For example the rate of extension of the Stem
object will depend on temperature from the
Weather object, water uptake from the Root
object, and carbon fixation by the Leaf_canopy
object. (In this paper, an initial capital letter is
used to denote objects, and an underscore links
separate words in the name.) Because the
interactions between objects are complex, there is
no obvious sequence of action being passed from
one object to another. Should the Leaf instruct
the Root to grow or vice versa? The obvious
answer is to have an object called Timer or
Sequencer or Simulation_controller to instruct
all the plant objects to grow in turn. This
immediately imposes a procedural component
on our OOD. Our Simulation_controller looks
very much like the main program in a procedural
code.

There is another fundamental difference be-
tween plants and ATMs. With ATMs we under-
stand completely the processes that occur,
whereas with plants our knowledge is incom-
plete. An ATM program is a complete physical
description of what happens in an ATM but a
plant model is, by definition and necessity, an
approximation of a biological system. One sim-
plification commonly used to deal with interac-
tions in plant models is the Law of Limiting
Factors (Blackman, 1905). This assumes that,
when several factors are required for a process,
the factor that is most limiting will determine the
rate of the process (Acock et al., 1985). For
example, growth depends on temperature and on
supplies of carbon, water and nutrients. Many
plant models calculate a potential growth rate
for the plant using the factor considered most
limiting and assuming that no other factors are
limiting. This potential growth rate is then decre-
mented or limitcd in some way for each of the
other relevant factors to determine actual growth
rate (Joyce and Kickert, 1987). To use this sim-
plification, we must calculate potential growth
rates, decrements or limitations and then actual
growth rate. Again, we have introduced a pro-
cedural component into our OOD.

With these procedural elements in plant
models, the purist tells us that we do not have an
OOD and asks why we even try to use OOD. Our
answer is that OOD appears to have sufficient
advantages to make its use worthwhile despite the
imperfections of our mixed design. Also, others
have found it necessary to introduce procedural
elements into OOD, but they have called them
control objects (Jacobson et al., 1992) or
mediators and chains of responsibility (Gamma et
al., 1995). We are not convinced that these really
solve the problem.

Implementing our mixed procedural/object-ori-
ented design would be difficult in a purely ob-
ject-oriented language like Smalltalk80 but C + +
enables us to mix paradigms easily. The
danger, of course, is that we will continue to
write procedural code and miss some of the ad-
vantages of OOD.

36 B. Acock, V.R. Reddy / Ecological Modelling 94 (1997) 33-44

2.3. Accommodating various levels o f detail

Plant models can be built at various levels of
detail, depending on their purpose. The simplest
models consist of a single equation describing
plant biomass as a function of time. Other models
describe subcellular processes. Whereas the sim-
plest model only requires a Plant object, other
models will subdivide the Plant into Leaves,
Roots, etc., and some will further subdivide
Leaves into Mesophyll_cells, Xylem_vessels, and
so forth. The most detailed model will not need a
Plant object because the Plant will be the aggre-
gate of all the other objects. However, there is an
argument for including a Plant object.

If we start our model with a simple Plant
object, we can subsequently subdivide the Plant
object and pass on any information needed by the
Leaf and Root objects. If we start with Leaves
and Roots but no Plant, we cannot subsequently
replace our complex Plant with a simple one that
does not recognize the individual organs of plants.
Our design has no point of attachment for a
simple Plant object.

It is reasonable to ask why we would ever want
to replace a detailed plant model with a simple
one. Perhaps we want to use our basic design to
model plants for which the quality of input data
does not warrant the detail, or we want to exam-
ine species interactions in an ecosystem and need
to reduce model run time. In other words, reuse
of code is facilitated by developing an OOD that
includes objects corresponding to higher levels of
aggregation than that at which the model is writ-
ten.

2.4. Processes as objects

The objects in an OOD include both attributes
and algorithms to compute changes in attributes.
Thus photosynthesis is a process that is performed
by the Leaf canopy object and is included in that
object. Is there ever a case for making processes
into separate objects? Computer scientists have
recognized instances where some processes should
be implemented as objects (Halbert and O'Brien,
1987; Johnson and Foote, 1988). In plant models,
there are compelling reasons for treating photo-

synthesis and similar processes as separate ob-
jects. Photosynthesis has been studied in great
detail and there are many models of the process.
Hence, making this process a separate object facil-
itates testing and comparing the various alterna-
tive models (see examples in Chen and Reynolds,
1997 and Lemmon and Chuk, 1997).

2.5. Inheritance structure and control structure

In our mixed procedural/object-oriented design,
there are two structures that must be considered:
inheritance and control. In an inheritance struc-
ture the objects are arranged in a branched hier-
archy such that objects at a low level are examples
of the object immediately above them (Appendix
A). This is sometimes called a 'kind-of' hierarchy
(i.e. Mainstem is a kind of Stem, Stem is a kind of
Shoot organ, Appendix A). The inheritance
structure is developed to allow several objects to
use the same algorithms (Cox, 1986; Booch,
1991). For instance, if the same algorithm can be
used to describe growth in Stem and Petiole, it
can be placed in Shoot_organ and inherited from
there by Stem and Petiole, and by all objects
lower in the hierarchy. This may be the only
reason for having a Shoot organ object. In our
experience, inheritance should be used with great
care. It is unwise to develop inheritance structures
more than about two layers deep, because debug-
ging the code becomes very difficult. For example,
if some algorithm that is used in Mainstem is
inherited from System entity via P l a n t p a r t ,
Shoot_organ and Stem, then its origin must be
traced through each of these layers. The level of
frustration rises with each step it takes to discover
the algorithm. Lorenz (1993) recommended using
no more than 6 levels of inheritance because of
this problem, and the disadvantages of inheritance
are discussed at length by Taenzer et al. (1989).

Attributes can also be inherited from superior
objects in the hierarchy. Since the names will be
the same in each object that inherits them, this
facility should be reserved for variables that are
used exclusively inside the objects. For instance,
all objects below Shoot_organ in the hierarchy
inherit the attribute dry_weight. If we obtain dry
weights of several objects by sending them the

B. Acock, V.R. Reddy / Ecological Modelling 94 (1997) 33-44 37

message.give_dryweight , we will have to rename
each dry weight to something more specific to
avoid confusion.

In our control structure, the objects and mes-
sages sent to them are arranged in a call order
dictated by the procedural components of the
design (Appendix B). A pure OOD would not
need a control structure. The calls are further
arranged in a branched hierarchy such that phe-
nomena are considered in greater detail as we
descend the hierarchy (Chandy and Misra, 1988;
Lamport, 1984). Thus, as shown in Appendix B,
the simplest model possible would consist of only
the first two levels of the hierarchy. The plant
would be represented by the single object Plant,
and in response to the message.grow, it would
update its state. A model at the next level of detail
would have Plant internally implement
method.develop, method.potential growth, etc.

The model does not have to be equally devel-
oped in all the branches of the control structure.
It is possible to have great detail for photosynthe-
sis but treat water stress superficially. This may be
desired in a model of a greenhouse crop where the
crop is adequately watered but the use of carbon
dioxide enrichment necessitates a detailed treat-
ment of photosynthesis.

The control structure is also developed to man-
age data flow. Information about objects low in
the hierarchy is passed through the objects above
them. Thus, information about photosynthetic
rate is passed to Plant through Crop_canopy.
This method of handling data is not absolutely
necessary. The Plant could go directly to Photo-
synthesis for the same information. However, in
order to accommodate various levels of detail, as
discussed above, it is desirable to consider data
handling in the control structure.

Both the inheritance structure and the control
structure need to be developed at the start of an
OOD in order to determine objects that should be
included in the model.

3. A proposed O O D for crop models

Our proposed OOD for crop plant models is
defined by the inheritance structure in Appendix

A, the control structure in Appendix B, and the
listing of objects, their attributes and methods in
Appendix C. It is based on an inheritance struc-
ture developed collaboratively by a group of Agri-
cultural Research Service and university scientists
who have worked together on a cotton model for
several years.

Some of the objects in the inheritance structure
do not appear in the control structure, e.g.
Aer ia lenvi ronment and Shoot_organ. This is be-
cause they are used to pass on attributes and
methods to inferior objects but do not themselves
participate in the storage of attributes or calcula-
tions involved in updating attributes. No part of
the hierarchy is more than two layers deep and
using the inheritance structure with the list of
objects, their attributes and methods, it is fairly
simple to locate the code of algorithms inherited
from superior objects.

Near the bottom of the control structure are
several messages that carry arguments. The for-
mat is: Ob jec t_name .message toob j ec t : argu-
ment one:argument two. Since this model
concentrates on the plant, the Soil_environment
has been left as a single, undivided object in the
control structure. We have had some vigorous
debates over whether this object can be usefully
subdivided. At first we thought that the matrix
algebra used to move materials about a two-di-
mensional soil profile dictated using a procedural
design within the one large object. More recently
we have considered making individual nodes and
elements in the soil profile into separate objects.

The list of objects, their attributes, and methods
is undoubtedly incomplete. In preparing it, our
chief concern was to list attributes of objects that
would be needed by other objects to perform their
methods. There will be many more attributes
needed internally in each object, but these can be
left to the discretion of individual programmers.
Indeed our aim has been to construct a design
that leaves maximum freedom in implementation
but would ensure compatibility between objects
written by different programmers.

The mathematical equations used in algorithms
look much the same in any computer language.
The differences lie mainly in the commands that
are available. Rather than having all plant model-

38 B. Acock, V.R. Reddy / Ecological Modelling 94 (1997) 33- 44

ers learn an object-oriented language, we can
implement the proposed design as a shell us-
ing dummy algorithms to ensure that the ob-
jects interact as intended. Then modelers can
replace these dummy algorithms with algorithms
of their own choosing. In this way, most mode-
lers need only learn how to write equations in
the new language. They will not be concerned
with how the objects interact, only that cer-
tain objects obtain attributes from other ob-
jects.

The proposed design has been implemented as a
shell in C+ + and the source code is available
from the authors.

Acknowledgements

We acknowledge the programming skill of
Geetha Reddy in implementing our design as a
shell in C+ + and testing the program. Roger
Whitney gave us an especially helpful review,
sharpened our thinking about the problems we
discuss, and pointed out several references in the
computer science literature that we had not previ-
ously encountered. He disagrees with our conclu-
sion about the need for a mixed design and
believes that the use of control objects, mediators
and chains of responsibility would keep us within
the OOD paradigm.

4. Conclusions

Object-oriented design (OOD) and program-
ming (OOP) have thus far been used almost
exclusively for modeling interactions between ob-
jects, where the actions are discrete and sequen-
tial. Interactions between objects in the plant,
soil and atmosphere are complex, continuous
and parallel. It is almost impossible to use a
pure OOD to model plants; procedural ele-
ments have to be introduced. Putting the proce-
dural elements into control objects does not
fundamentally alter the fact that the model de-
sign is mixed. However, some OOP languages
like C + + allow mixed designs to be imple-
mented. A mixed, but mostly object-oriented
structure has been developed that (1) contains the
components familiar in extant procedural designs,
(2) can be used for modeling at several levels of
complexity and (3) can be used to model any
plant.

The mixed procedural/object-oriented design
has been implemented in C+ + as a shell using
dummy algorithms, and its operation verified. The
advantages claimed for OOD are therefore avail-
able to plant modelers through the use of a mixed
design. By having a computer scientist develop a
shell of the model, it is possible for plant modelers
to work on the algorithms in each object without
learning the more complex aspects of the OOP
language.

Appendix A

Proposed inheritance structure for object-ori-
ented plant models. The only fertilizer element
shown is N; other elements would be handled
similarly

Simulation_controller
Time
Aerial_environment

Two _ meter_ environment
Canopy_ environment

Crop_canopy
Plant
Shoot_organ

Stem
Mainstem
Branch_ stem

Leaf blade
Mainstem_ leaf_ blade
Branch_ leaf_ blade

Petiole
Internode
Fruiting_point

Root_profile
Soil _environment
Plant_process

Development
Photosynthesis
Photorespiration
Maintenance_ respiration
Potential_ transpiration

B. Acock, V.R. Reddy / Ecological Modelling 94 (1997) 33-44 39

N_acquisition
N_ partitioning
C_ partitioning

Management_action

Appendix B

Proposed control structure for object-oriented
plant models

Simulation control ler . run
Time.step
if a new day: Two_meter_environment.inter-
polate
Canopy__ environment, update
Plant.grow

Plant.develop
Development. update

Plant.potential _growth
Mainstem.potential_growth
Branch_ stem. potential _ growth
Mainstem_ leaf_blade.potential_growth
Branch_ leaf blade.potential_growth
Petiole.potential _growth
lnternode.potential_growth
Fruiting _ point.potential __ growth
Root_ profile, potential _ growth

Plant.water_limitations
Crop canopy.transpire

Potential_. transpiration.calculate
Plant.water_ stress

Plant.N-limitations
Plant.acquire_N

N _ acquisition.calculate
Plant.partition_ N

N_partitioning.calculate
Plant.N_stress

Plant.C_ limitations
Plant.acquire_C

Crop _canopy.photosynthesize
Photosynthesis.calculate

Crop_ canopy.photorespire
Photorespiration.calculate

Crop _ canopy .maintenance _ respire
Maintenance_ respiration .calculate

Plant.partition C

C_ partitioning.calculate
Plant.C_ stress

Plant.actual _growth
M ainstem.aet ual._ growth
Branch_ stem.actual_ growth
M ainstem _ leaf_ blade, actual _ growth
Branch_ leaf_ blade, actual _ growth
Petiole. actual _ growth
Internode.actual_growth
Fruiting_ point.actual_ growth
Root_ profile.actual_ growth

Plant.abscission
M ainstem _ leaf_ blade, abscission
Branch_. leaf_blade.abscission
Petiole.abscission
Fruiting_ point.abscission
Root __profile.abscission

Management.act__ if_ time
Crop_canopy.set canopy chemical :

a_chemical to:an _amount
Soil_ environment, set_ chemical:

a_chemical at:node to:an_amount
Soil_environment.set_irrigation at:node

to:an_amount
Soil _ environment .set _ bulk _ density

at:node t o : a n a m o u n t
Soil_ environment.update

Appendix C

Objects, their attributes and services for pro-
posed object-oriented plant models. The values of
most attributes can be obtained with the mes-
sage.give (name of attribute)

Simulation _controller
attributes or variables:
day_ to_ start_ run
day_to_s top_run
step_ size

services or methods:
.run starts the simulator

Time
attributes or variables:

40 B. .4cock, V.R. Reddy / Ecological Modelling 94 (1997) 33-44

date
day_ of_ year
hour

services or methods:
• step-move time forward one timestep
.date _from d a y of year
• day_ of_ year _ from_ date

Aerial_ environment
attributes or variables:
latitude
daylength
dawn
dusk
CO2

services or methods:

Two_meter_environment
attributes or variables:
atmospheric_ transmission _coefficient
cloud_cover_factor
for each day:
solar_ radiation_ integral
air temperature_max
air_ temperature_ min
rain_ total
wind _run
w a t e r v a p o r pressure
for each time step of the day:
solar altitude
solar_azimuth
cloud _cover
diffuse/total_ radiation
solar_ radiation
air_ temperature
rain
wind
vpd

services or methods:
.interpolate-use daily values to calculate values
for each timestep

Canopy_ environment
attributes or variables:
canopy_ temperature

rain_intercepted
ra in_onsoi l

services or methods:
.update-calculate canopy environment at current
time
.give_avg temp_from: s ta r t t ime to: end_time

Crop_canopy
attributes or variables:
potential_ transpiration _ rate
actual_transpiration_rate
canopy albedo
leaf_ transmission_ coefficient
canopy_CO2_conductance
canopy_extinction_coefficient
canopy_light_utilization_efficiency
photosynthesis rate
photorespiration_ rate
maintenance_ respiration _ rate
plant_ population _ density
leaf area index
leaf/canopy_area
light_interception
canopy_water potential
canopy_osmotic_potential
canopy_chemical
canopy chemical_amount

services or methods:
•transpire
•photosynthesize
.photorespire
• maintenance respire
.set_canopy_chemical:a_chemical to:an_amount

Plant
attributes or variables:
cultivar
age
development_ stage
potential_growth_in_dry_weight
l e a f water_potential
leaf_ osmotic_ potential
leaf_turgor_pressure
N d e m a n d
C d e m a n d
Nsupp ly

B. Acock, V.R. Reddy / Ecological Modelling 94 (1997) 33-44 41

C_supply
N_supply/demand
C_supply/demand
shoot_growing time
N_pool
C_pool

services or methods:
• grow-grow plant for one timestep
•develop
•potential_growth
• water_ limitations
.water_stress
.N_limitations
• acquire_ N
.partition_N
•N_stress
.C_limitations
.acquire_C
•partition_C
.C_stress
.actual_growth
.abscision

Shoot_organ
attributes or variables:
on_stem_number
location on stem
dry_weight
proportion_ present
N_content
initiation _day
abscission_day
age
development_ stage
growing
C_demand
N_demand
C_supply/demand
Nsupply/demand

services or methods:

Stem
attributes or variables:
length
number_leaves_on_stem

services or methods:

Mainstem
attributes or variables:
number _of...branches

services or methods:
•potential_growth
•actual_growth
•abscission

Branch_stem
attributes or variables:

services or methods:
•potential_growth
• actual _growth
.abscission

Leaf_blade
attributes or variables:
area
thickness
water_potential

services or methods:

Mainstem_leaf_hlade
attributes or variables:

services or methods:
.potential _growth
• actual_ growth
•abscission

Branch_leaf_blade
attributes or variables:

services or methods:
• potential _growth
.actual growth
.abscission

Petiole
attributes or variables:
length

services or methods:
•potential_growth
.actual_growth
•abscission

42 B. Acock, V.R. Reddy / Ecological Modelling 94 (1997) 33-44

lnternode
attributes or variables:
length

services or methods:
•potential_growth
.actual_growth
•abscission

Fruiting_point
attributes or variables:
stage_ of_ development
fruit_dry_weight
potential_seed_dry_weight
actual_seed_dry_weight

services or methods:
•potential_growth
.actual_growth
•abscission

Root_profile
attributes or variables:
for each node in the soil profile:
young_root_length
old _ root_ length
young_ root _dry_weight
o ld_root_dry_weight
root _ water_ uptake
root_N03_uptake
roo t_P_uptake
root_ K _ uptake

hydraulic_conductivity
soil _ water_ content
soil _ water_ potential
soil _ osmotic_ potential
soil_ temperature
soil_N
soil_N03
soi l_NH4
soil_P
soil_K
soil _CI
soil_pH
soil_O2
soil_CEC
soil_ organic_matter
for upper boundary nodes:
runoff
soil_ water_evaporation
for lower boundary nodes:
deep_drainage

services or methods:
.update-calculate soil environment at current time
.set chemical:a_chemical at:node to:an_amount
.set_irrigation at:node t o : a n a m o u n t
.set_bulk_density at:node to:an_amount

Plant_process
attributes or variables:

services or methods:

services or methods:
• water _ uptake
.N03_ uptake
.potential_growth
.actual_growth
.abseision

Soft _environment
attributes or variables:
for each node in the soil profile:
sand
silt
clay
bulk_density
total _ pore_ space

Development
attributes or variables:
development_ stage
change_in_development_stage

services or methods:
.update

Photosynthesis
attributes or variables:
photosynthesis_ rate

services or methods:
.calculate

B. Acock, V.R. Red@ / Ecological Modelling 94 (1997) 33-44 43

Photorespiration
attributes or variables:
photorespiration_ rate

services or methods:
.calculate

Maintenance_respiration
attributes or variables:
maintenance_respiration_rate

services or methods:
.calculate

Potential_Transpiration
attributes or variables:
potential _transpiration _ rate

services or methods:
.calculate

N_acquisition
attributes or variables:
N_supply

services or methods:
.calculate

N_partitioning
attributes or variables:
for each shoot organ:
N_supply/demand

services or methods:
.calculate

C_partitioning
attributes or variables:
for each shoot organ:
C_ supply/demand

services or methods:
.calculate

Management
attributes or variables:
row_orientation
row_ pattern

row_spacing
sowing_day
sowing_depth
seeddensi ty
emergenceday
emerged_plant_density
target_maturity_day
day of action
type_of_action
irrigation_location
irrigation _rate
irrigation _duration
irrigation_chemical_type
irrigation chemical_conc
chemical_applied
chemical_application_location
chemical_application_amount
tillage_location
t i l lagedepth

services or methods:
.act if time-check to see if a management action
takes place at this time

References

Acock, B., Reddy, V.R., Whisler, F.D. et al., 1985. The
soybean crop simulator GLYCIM: model documentation.
No. PB85 171163-AS, USDA, Washington, DC.

Acock, B. and Reynolds, J.F., 1997. Introduction: modularity
in plant growth models. Ecol. Model., 94: 1-6.

Blackman, F.F., 1905. Optima and limiting factors. Ann. Bot.
(old series), 19: 281-295.

Booch, G., 1991. Object-oriented design with applications.
Benjamin-Cummins, Redwood City, CA, 580 pp.

Chandy, K.M. and Misra, J., 1988. Parallel Program Design:
A Foundation. Addision-Wesley, Reading, MA, 512 pp.

Chen, J.-L. and Reynolds, J.F., 1997. GePSi: a generic, plant
growth simulator based on object-oriented principles. Ecol.
Model., 94: 53-66.

Cox, B., 1986. Object-oriented programming: an evolutionary
approach. Addison-Wesley, Reading, MA.

Gamma, E., Helm, R.R.J. and Vlissides, J., 1995. Design
patterns: elements of reusable object-oriented software,
Addison-Wesley, Reading, MA, 395 pp.

Halbert, D.C. and O'Brien, P.D., 1987. Using types and
inheritance in object-oriented programming. IEEE Sot~
ware, 4:71-79.

Jacobson, I., Cllristerson, M., Jonsson, P. and Over~aard,,
G., 1992. Object-oriented software engineerirlg: a u s e

case driven approach. Addison-Wesley, Reading, MA, 524
pp.

44 B. Acock, V.R. Reddy / Ecological Modelling 94 (1997) 33-44

Johnson, R.E. and Foote, B., 1988. Designing reusable classes.
J. Object-Oriented Programming, June/July: 2 -35.

Joyce, L.A. and Kickert, R.N., 1987. Applied plant growth
models for grazinglands, forests and crops. In: K. Wisiol and
J.D. Hesketh (Editors), Plant Growth Modeling for Resource
Management. CRC Press, Boca Raton, FL.

Lamport, L., 1984. Solved problems, unsolved problems,
and non-problems in concurrency. 3rd Annual ACM
Symp. Principles of Distributed Computing, Montreal,
Canada.

Lemmon, H. and Chuk, N., 1997. Object-oriented design of a
cotton crop model. Ecol. Model., 94:45 -51.

Lorenz, M., 1993. Object-oriented software development: a
practical guide. Prentice-Hall, Englewood Cliffs, N J, 227 pp.

Meyer, B., 1988. Object-oriented software construction. Prentice
Hall, Englewood Cliffs, N J, 534 pp.

Taenzer, D., Ganti, M. and Podar, S., 1989. Object-oriented
software reuse: the yoyo problem. J. Object-Oriented Pro-
gramming, 2: 30-35.

Wegner, P., 1990. Concepts and paradigms of object-oriented
programming. Oops Messenger, 1: 7-87.

Wolczko, M., 1987. Semantics of Smalltalk-80. Eur. Conf. Proc.
Object Oriented Programming. Springer-Verlag, Paris,
France, pp. 108-120.

